
Abstract. An adiabatic integration formula for the
quantum chemistry correlation energy functional of the
Hartree±Fock density, EQC

c n� �, is presented. The func-
tional EQC

c n� � is meant to be added to the completed
Hartree±Fock energy to produce the exact ground-state
energy of the system under consideration. The initial
slope of the integrand in this connection formula is
identi®ed as a second-order energy and an explicit
expression for the initial slope of the integrand is
presented. Our expression should be useful for arriving
at new improved approximations to EQC

c n� �. Previous
numerical results by Huang and Umrigar (1997) Phys
Rev A 56:290, for two-electron densities are proved, and
a generalization to more than two electrons is presented.
Results obtained by means of the present density
functional theory correlation energy functionals, when
used to approximate the initial slope in our adiabatic
integration formula for EQC

c n� �, are compared against
exact numbers.

Key words: Correlation energy functionals ± Density
functional theory

1 Introduction

The construction of accurate correlation energy func-
tionals and the continuous improvement of present ones
are crucial in achieving high-quality density functional
calculations not only within the Kohn±Sham (KS)
formalism [1±8], but also in hybrid schemes featuring
density functionals as post-Hartree±Fock (HF) methods
[8±15]. Knowledge of the exact properties of the
unknown correlation energy functionals is very impor-
tant because approximate functionals could then be

made to satisfy these exact constraints. With these goals
in mind, new relations between the conventional density
functional theory (DFT) correlation energy functional,
Ec n� � [6, 8], and the traditional quantum chemistry (QC)
correlation energy functional of the HF density, EQC

c n� �,
are presented. Ec n� � is to be used in self-consistent KS
calculations, in contrast to EQC

c n� � which is meant to be
added to the completed HF energy to produce the exact
ground-state energy of the system of interest. The
utilization of this latter functional enables one to replace
the time-consuming methods for calculating QC corre-
lation energy which are usually based on many-body
perturbation theory, with a simpler calculation involving
EQC
c n� �.
The present study has also been in¯uenced by a re-

cent work of Huang and Umrigar [16]. They numeri-
cally investigated the asymptotic high-nuclear charge
(high-Z) expansion for the Coulombic potential and
the asymptotic high-force constant expansion for the
harmonic oscillator potential for the DFT and QC
correlation energies for two-electron densities. For the
two-electron systems studied, they found numerically
that the respective asymptotic series begin with the same
second-order energy term. We shall prove their numer-
ical observations for two-electron systems, as well as
derive an inequality connecting the second-order ener-
gies in both series studied for more than two electrons,
with the caveat of nondegeneracy. Previous DFT±high-
Z connections have been made by Perdew et al. [17],
Chakravorty and Davidson [18], and Ivanov and Levy
[19].

We shall introduce an adiabatic integration formula
for EQC

c n� � and identify the initial slope of the integrand
as a second-order energy. For certain atomic densities,
the second-order energy is the leading term in the high-
Z asymptotic series for the QC correlation energy.
Since there are numbers available for the QC correla-
tion energy for isoelectronic systems with in®nite nu-
clear charge, Z !1 [18, 20], and for Harmonium with
in®nite force constant [16, 21±23], we will compare
these numbers against those obtained from di�erent
DFT functionals when used as approximations to
EQC
c n� �.
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2 De®nitions and notation

In atomic units (hartree atomic units are to be used
throughout the paper), the Hamiltonian operator cĤ is
de®ned as

cĤ�R� � T̂�R� � c V̂ee�R� �
XN

i�1
v�ri� ; �1�

where R represents all coordinates. In the above
formula, T̂�R� and V̂ee�R� are the kinetic energy and
electron±electron repulsion operators, respectively, and
v�r� is the external potential for the system of interest. In
Eq. (1), c is a coupling constant that turns on and o� the
electron±electron repulsion. Note that when c � 1, the
Hamiltonian in Eq. (1) corresponds to the full interactive
Hamiltonian of some system in the external potential
v�r�.

The ground-state energy of cĤ, cEGS, is given by

cEGS � cWGSjcĤjcWGS


 �
; �2�

where cWGS is the wavefunction that minimizes the
expectation value of cĤ. The restricted HF energy cEHF

is de®ned as

cEHF � cUHFjcĤjcUHF


 �
; �3�

where cUHF is the single determinant that minimizes
cĤ

 �

.
The traditional QC correlation energy cEQC

c
cn� � is

de®ned [24] as the di�erence between cEGS and
cEHF and

it is a unique functional of the HF density cn�r�, as
shown independently by Harris and Pratt [12], and Levy
[13], and extended by Davidson [14]. Namely

cEQC
c

cn� � � cWGSjcĤjcWGS


 �
ÿ cUHFjcĤjcUHF


 �
: �4�

In Eq. (4), cn�r� is the HF density obtained from cUHF,
i.e. cn�r� � cUHFjq̂jcUHFh i, q̂ is the density operator. The
HF density is not the same as the ground-state density
cnGS�r� obtained from cWGS, except for the special case
of the nondegenerate ground state for c � 0. Note that
the de®nition of the correlation energy cEQC

c
cn� � depends

upon c, as well as upon the density.

3 Adiabatic connection formula

The Hamiltonian given in Eq. (1) is particularly useful
for studying the actual QC correlation energy EQC

c n� �
corresponding to systems with a full electron±electron
repulsion, i.e. EQC

c n� � � cEQC
c

cn� � at c � 1. In order to
simplify our notation, when c � 1 the superscript will be
omitted. For systems with a nondegenerate ground state,
EQC
c n� � can be obtained by

EQC
c n� � �

Z1
0

d cEQC
c

cn� � �
Z1
0

@ cEQC
c

cn� �
@c

dc : �5�

Equation (5) follows directly from Eq. (4) because for a
nondegenerate ground state at c � 0; 0WGS is the same as

0UHF, and
0EQC

c
on� � becomes zero. By using the de®ni-

tion of cEQC
c

cn� �, and taking advantage of the minimizing
(stationary) nature of cWGS and cUHF, we obtain

EQC
c n� � �

Z1
0

cV QC
c

cn� � dc ; �6�

where

cV QC
c

cn� � � @
cEQC

c
cn� �

@c

� cWGSjV̂eejcWGS


 �ÿ cUHFjV̂eejcUHF


 �
: �7�

In contrast to the adiabatic integration formula in
DFT [25, 26], where the density is kept the same along
the integration path, in our formula for EQC

c n� �, Eq. (6),
the density changes along the integration path c. New
improved approximations to EQC

c n� � can be developed by
approximating the integrand cV QC

c
cn� � in a similar way to

what has recently been done by Ernzerhof [27], and by
Perdew and coworkers [28±32] in their modeling of the
DFT adiabatic connection integrand.

By applying standard Rayleigh±SchroÈ dinger pertur-
bation theory, we develop expansions for cEGS and cEHF

and their respective wavefunctions cWGS and cUHF. The
energy expressions read

cEGS � Eo � c1E�1�GS � c2E�2�GS � c3E�3�GS � � � �

� Eo �
X1
j�1

cjE�j�GS ; �8�

and

cEHF � Eo � c1E�1�HF � c2E�2�HF � c3E�3�HF � � � �

� Eo �
X1
j�1

cjE�j�HF : �9�

In Eqs. (8) and (9), Eo is the ground-state energy of 0Ĥ,
i.e. cĤ at c � 0. The eigenvalue problem corresponding
to 0Ĥ is

0Ĥ Uk � Ek Uk; Eo < E1 � E2 � � � � � Ek � � � � ; �10�
where we shall concern ourselves with situations where
Eo is nondegenerate. For k > 0, Uk are the excited-state
wavefunctions of 0Ĥ.

The corresponding series for the wavefunctions cWGS

and cUHF are

cWGS � W�0�GS � c1W�1�GS � c2W�2�GS � c3W�3�GS � � � �

�
X1
j�0

cjW�j�GS �11�

and

cUHF � U�0�HF � c1U�1�HF � c2U�2�HF � c3U�3�HF � � � �

�
X1
j�0

cjU�j�HF : �12�
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When 0Ĥ has a nondegenerate ground state, both series
begin with the same Uo which is the ground-state
solution to Eq. (10), k � 0. In other words, W�0�GS �
U�0�HF � Uo. Unless otherwise stated, this nondegeneracy
shall be assumed.

The second and third terms in the corresponding
expansions for cEGS and cEHF, with nondegenerate Eo,
are

E�1�GS � E�1�HF � UojV̂eejUo


 �
; �13�

E�2�GS �
1

2



UojV̂eejW�1�GS

�� 1

2



W�1�GSjV̂eejUo

�
; �14�

and

E�2�HF �
1

2



UojV̂eejU�1�HF

�� 1

2



U�1�HFjV̂eejUo

�
: �15�

For completeness of the presentation, we explicitly show
the complex conjugate counterparts of the wavefunc-
tions even though the energies are real. In the above
equations, W�1�GS is expanded in the usual way as

W�1�GS �
X1
k�1

UkjV̂eejUo


 �
Eo ÿ Ek

Uk : �16�

In terms of eigenfunctions of 0Ĥ, U�1�HF is given by [19]

U�1�HF �
X1
k�1



Uk
PN

i�1
HFv̂� Uo� �; ri�

�� ��Uo

�
Eo ÿ Ek

Uk

�
X1

k�1
S:E:

UkjV̂eejUo


 �
Eo ÿ Ek

Uk ; �17�

since HFv̂� Uo� �; r� is a one-body operator and for every
determinant Uk corresponding to single excitation

Uk

XN

i�1
HFv̂� Uo� �; ri�

�����
�����Uo

* +
� UkjV̂eejUo


 �
: �18�

In Eq. (17), HFv̂� Uo� �; r� is the HF nonlocal e�ective
potential which has two contributions: the nonlocal
exchange potential HFv̂x� Uo� �; r� built from the occupied
one-particle orbitals of Uo, and the local Hartree
potential u��on�; r�, associated with the density on
obtained from Uo. S.E. indicates that the summation is
over single excitations only.

By subtracting Eq. (9) from Eq. (8), along with
making use of Eq. (13), one obtains an expression for
cEQC

c
cn� � which begins with c2EQC;�2�

c :

cEQC
c

cn� � � c2EQC;�2�
c � c3EQC;�3�

c � � � � �
X1
j�2

cjEQC;�j�
c ;

�19�
where

EQC;�j�
c � E�j�GS ÿ E�j�HF : �20�

It follows that

lim
c!0

cÿ2 cEQC
c

cn� � � EQC;�2�
c : �21�

When the ground state of 0Ĥ is degenerate, the
expansion for cEQC

c
cn� � is expected, in general, to begin

with a term linear in c since E�1�GS < E�1�HF.
By making use of Eqs. (14)±(17), the second-order

energy EQC;�2�
c , given in terms of eigenstates of 0Ĥ, be-

comes [19]

EQC;�2�
c � 1

2



UojV̂eej

�
W�1�GS ÿ U�1�HF

	�
� 1

2


�
W�1�GS ÿ U�1�HF

	jV̂eejUo

�
�
X1

k�1
D:E:

jhUkjV̂eejUoij2
Eo ÿ Ek

: �22�

In Eq. (22), D.E. signi®es double excitations: in other
words, the summation is over those eigenstates Uk of 0Ĥ
which are obtained by exciting two electrons from Uo.
There is no contribution from singly excited states.

By di�erentiating Eq. (19) with respect to c (see
Eq. 7), we obtain an expression for cV QC

c
cn� � for small

c, namely

cV QC
c

cn� � � 2cEQC;�2�
c � 3c2EQC;�3�

c � � � � : �23�
Here, 2EQC;�2�

c is the initial slope of the integrand in Eq.
(6) for c � 0, and EQC;�2�

c is given explicitly in terms of
the eigenfunctions and eigenvalues of 0Ĥ in Eq. (22).

It is worth mentioning that, for a nondegenerate
ground state, the densities obtained from the wavefunc-
tions cWGS and

cUHF are the same through the ®rst order
in c. This follows from the forms ofW�1�GS andU�1�HF, and the
fact that the density operator q̂ is a one-body operator.
For the ®rst order in c, one has

W�1�GSjq̂jUo

�� 
Uojq̂jW�1�GS

�
� 
U�1�HFjq̂jUo

�� 
Uojq̂jU�1�HF

� � n�1� : �24�

4 Perturbation expansion for the DFT correlation energy

For the Hamiltonian in Eq. (1), the conventional DFT
correlation energy functional cEc

cnGS
� �

is de®ned as
[6, 8]

cEc
cnGS
� � � cEGS ÿ cEKS

� cWGSjcĤjcWGS


 � ÿ cUKSjcĤjcUKS


 �
:

�25�
In Eq. (25), according to the constrained-search
formulation of DFT [7], cUKS is the wavefunction which
minimizes the expectation value of the kinetic energy
operator only, and yields the actual ground-state density
cnGS for every c. At c � 1, one has the DFT correlation
energy for the fully interacting system.

Next, we shall obtain perturbation expansions for
cEKS and cUKS for small-enough c for systems with
nondegenerate ground states at c � 0.
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The respective series for cEKS and cUKS read

cEKS � Eo � c1E�1�KS � c2E�2�KS � c3E�3�KS � � � �

� Eo �
X1
j�1

cjE�j�KS ; �26�

and

cUKS � Uo � c1U�1�KS � c2U�2�KS � c3U�3�KS � � � �

� Uo �
X1
j�1

c jU�j�KS : �27�

The second and third terms in Eq. (26) are

E�1�KS � UojV̂eejUo


 �
; �28�

and

E�2�KS �
1

2



UojV̂eejU�1�KS

�� 1

2



U�1�KSjV̂eejUo

�
: �29�

By subtracting Eq. (26) from Eq. (8) along with making
use of Eq. (28), one arrives at an expression for cEc�cnGS�
which begins with c2E�2�c :

cEc
cnGS
� � � c2E�2�c � c3E�3�c � � � � �

X1
j�2

cjE�j�c ; �30�

or

lim
c!0

cÿ2 cEc
cnGS
� � � E�2�c ; �31�

where

E�j�c � E�j�GS ÿ E�j�KS : �32�
In Eqs. (30) and (31), E�2�c is given by

E�2�c �
1

2



UojV̂eej

�
W�1�GS ÿ U�1�KS

	�
� 1

2


�
W�1�GS ÿ U�1�KS

	jV̂eejUo

�
: �33�

To obtain U�1�KS, we consider the equation to which cUKS

is an eigenfunction:

T̂�
XN

i�1
cvxu� cnGS

� �
; ri� � cvc� cnGS

� �
; ri�

� ��XN

i�1
�ri�

( )
� cUKS � c �EKS

cUKS : �34�
Note that c �EKS, which is a sum of the KS orbital
energies, is di�erent from cEKS. In Eq. (34), vxu��cnGS�; r�
and cvc��cnGS�; r� are local spin-independent multiplica-
tive potentials.

The correlation potential cvc��cnGS�; r� is the func-
tional derivative of cEc�cnGS� and vxu��cnGS�; r� is the
functional derivative of Exu�cnGS� � hcUKSjv̂eejcUKSi,
with respect to the density. Here cUKS is the single de-
terminant that minimizes hT̂i, and yields cnGS. The sum
cvxu��cnGS�; r� �c vc��cnGS�; r� makes the density obtained
from cUKS the same as the density obtained from cWGS.
All potentials considered are adjusted by additive con-
stants to vanish at in®nity.

For small c, c �EKS is expanded in the following way

c �EKS � Eo � c1 �E�1�KS � c2 �E�2�KS � c3 �E�3�KS � � � �

� Eo �
X1
j�1

cj �E�j�KS : �35�

Next, assume Taylor expansions for vxu��cnGS�; r� and
cvc��cnGS�; r� about c � 0. Upon substituting Eqs. (27)
and (35) in Eq. (34), and equating all terms of order c,
one obtains

0Ĥÿ Eo

� �
U�1�KS � �E�1�KS ÿ

XN

i�1
vxu� on� �; ri�

" #
Uo : �36�

Note that in Eq. (36), there is no term linear in c which
comes from cvc��cnGS�; r� because of Eq. (30). Similar
results appear in GoÈ rling±Levy perturbation theory
[9, 32, 33].

In terms of eigenfunctions of 0Ĥ, U�1�KS is given by

U�1�KS �
X1
k�1



Uk
PN

i�1 vxu� on� �; ri

�� ��Uo

�
Eo ÿ Ek

Uk : �37�

By subtracting Eq. (37) from Eq. (16), one ®nds

W�1�GS ÿ U�1�KS �
X1
k�1



Uk V̂ee ÿ

PN
i�1 vxu� on� �; ri�

�� ��Uo

�
Eo ÿ Ek

Uk :

�38�
Since the densities obtained from cWGS and cUKS are
identical by de®nition, i.e.

cWGSjq̂jcWGSh i � cUKSjq̂jcUKSh i ; �39�
for order 1 in c, one has

W�1�GS q̂

��Uo

�� �� 
Uo q̂j jW�1�GS

�
� 
U�1�KS q̂

��Uo

�� �� 
Uo q̂j jU�1�KS

� � n�1� ; �40�
or

Uo

XN

i�1
A�ri�

�����
������W�1�GS ÿ U�1�KS

	* +

� �
W�1�GS ÿ U�1�KS

	 XN

i�1
A�ri�

�����
�����Uo

* +
� 0 ; �41�

where A�r� is any one-body multiplicative operator. Note
the similarity of Eqs. (24) and (40). Both wavefunctions
U�1�KS and U�1�HF yield the same ®rst-order density as the one
obtained from W�1�GS; however, U�1�KS is associated with a
local multiplicative external potential, whereas U�1�HF is
associated with the HF nonlocal e�ective potential. Only
for two-electron systems does the HF e�ective potential
become local.

With Eq. (41) in mind, and with A�r� � vxu� on� �; r�,
the expression for E�2�c becomes

E�2�c �
X1
k�1



Uk

��V̂ee ÿ
PN

i�1 vxu� on� �; ri�
�� ��Uo

�j2
Eo ÿ Ek

: �42�
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By separating the in®nite summation in Eq. (42) into a
summation over single excitations and a summation over
double excitations, one obtains

E�2�c �
X1

k�1
D:E:

Uk V̂ee

�� ��Uo


 ��� ��2
Eo ÿ Ek

�
X1

k�1
S:E:



Uk V̂ee ÿ

PN
i�1 vxu� on� �; ri�

�� ��Uo

��� ��2
Eo ÿ Ek

: �43�

The combination of Eqs. (22) and (43) leads to

E�2�c � EQC;�2�
c

�
X1

k�1
S:E:



Uk V̂ee ÿ

PN
i�1 vxu� on� �; ri�

�� ��Uo

��� ��2
Eo ÿ Ek

: �44�

For two-electron systems, there is no contribution from
single excitations and both series begin with the same
second-order energy. For more than two electrons, a
strict inequality applies. In general, for any number of
electrons, the following relation is true

E�2�c � EQC;�2�
c : �45�

In a similar way, it can be shown that the correlation
energy functional EHF

c nGS
� �

[8, 9], whose functional
derivative is meant to be added to the HF nonlocal
e�ective potential to produce, via self-consistency, the
exact ground-state density and ground-state energy,
satis®es the following limit

lim
c!0

cÿ2 cEHF
c

cnGS
� � � EQC;�2�

c : �46�

In Eq. (46), cEc
cnGS
� �

is de®ned as

cEHF
c

cnGS
� � � cWGSjcĤjcWGS


 �
ÿ cUHFjcĤjcUHF


 �
;

�47�

where cUHF is the HF single determinant which mini-
mizes hcĤi and yields the ground-state density cnGS for
every c [7±9].

5 Homogeneous external potentials

Next, for a homogeneous external potential, vb�r�, of
degree s which depends on some positive constant b, i.e.

vb�kr� � ksvb�r� ; �48�
we shall consider a canonical transformation of the
coordinate system, as originally suggested by Hylleraas
[35] and later utilized by Linderberg and Shull [36]. The
interacting Hamiltonian Ĥ�R� with some homogeneous
external potential vb�r� of degree s, can be expressed
equivalently in coordinate system kR as

Ĥ�R� � k2 T̂�kR� � 1

k
V̂ee�kR� � kÿsÿ2 XN

i�1
vb�kri�

( )
:

�49�

With an appropriate choice of k, which depends upon b,
Eq. (49) takes on the form

Ĥ�R� � k2 T̂�kR� � 1

k
V̂ee�kR� �

XN

i�1
v�kri�

( )
: �50�

In Eq. (50), v�r� corresponds to an external potential
which is independent of b. In other words, v�r� has the
form of vb�r� for b � 1. When the external potential is
linear in b, this leads to a simple relationship between k
and b depending upon the degree of homogeneity s, i.e.
b � k2�s. For example, if vb�r� � ÿb=r, then k � b, and
if vb�r� � br2, then k � b1=4.

Following Linderberg and Shull [36] and making use
of Eqs. (8)±(22) with c � 1=b for large-enough b, the
QC correlation energy for the Hamiltonian with vb�r�
becomes

EQC
c nb
� � � EQC;�2�

c � kÿ1EQC;�3�
c � � � �

�
X1
j�0

kÿjEQC;�j�2�
c ; �51�

with b � k2�s, for s > ÿ2. The density nb�r� depends on
the value of the constant b, but EQC;�2�

c is independent of
b. In turn, EQC;�2�

c is the leading term in the asympotic
high-b expansion for the whole isoelectronic series
associated with some vb�r� [35], i.e.
lim
b!1

EQC
c nb
� � � EQC;�2�

c : �52�

For the conventional DFT correlation energy following
Huang and Umrigar [16], in a similar way we obtain

lim
b!1

Ec nGS;b
� � � E�2�c : �53�

By using Eq. (45), we arrive at an inequality connecting
the asymptotic high-b expressions for Ec nGS;b

� �
and

EQC
c �nb�, namely

lim
b!1

Ec nGS;b
� � � lim

b!1
EQC
c nb
� �

: �54�

The strict inequality in Eq. (54) is true only for two-
electron densities (see Eq. 44). This equality has been
observed numerically by Huang and Umrigar [16] in
their studies on two-electron systems in homogeneous
external potentials in the high-b limit.

For the functional EHF
c �nGS�, de®ned in Eq. (47), one

has

lim
b!1

EHF
c nGS;b
� � � EQC;�2�

c : �55�

From the coordinate transformation in Eqs. (49) and
(50), as pointed out by Chakravorty and Davidson [18],
for large b, and respectively large k, it follows that

nb�x; y; z� ! k3 on�kx; ky; kz� : �56�
In Eq. (56), k3 on�kx; ky; kz� is the ground-state density of
the scaled Hamiltonian in Eq. (50), for b!1. Note
that k3 on�kx; ky; kz� is also the scaled ground-state
density of the Hamiltonian in Eq. (1) for c � 0 and
the homogeneous external potential vb�r� with b � 1.
By combining Eqs. (52) and (56), for a homogeneous
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external potential with a nondegenerate ground state, we

identify the second-order energy EQC;�2�
c through coor-

dinate-scaling of the density as

lim
b!1

EQC
c nb
� � � lim

k!1
EQC
c

onk� � � EQC;�2�
c : �57�

Since for large b, and respectively large k, nGS;b�x; y; z� !
k3 on�kx; ky; kz�, we obtain

lim
b!1

Ec nGS;b
� � � lim

k!1
Ec

onk� � � E�2�c ; �58�
and

lim
b!1

EHF
c nGS;b
� � � lim

k!1
EHF
c

onk� � � EQC;�2�
c : �59�

6 Numerical results

Since there are many published numbers for EQC;�2�
c [16,

18, 20, 21], we present these numbers as important
values for approximating cV QC

c
cn� �, in Eq. (6). We can

approximate the initial slope 2EQC;�2�
c by approximating

limk!1 EQC
c

onk� �, which, in turn, equals EQC;�2�
c (Eq. 57).

These exact numbers are compared against the results
obtained from three DFT correlation energy function-
als ± the one of Lee, Yang and Parr (LYP) [37], the
functional of Wilson and Levy (WL) [38], and the
recently derived generalized gradient approximation of
Perdew, Burke and Ernzerhor (PBE) [39].

To test approximations to cV QC
c

cn� �, ®rst we take the
exact values for the second-order energy EQC;�2�

c for ®ve
di�erent hydrogen-like densities. The model densities
are the ground-state densities of 0Ĥ in Eq. (1) with
v�r� � ÿb=r. EQC;�2�

c is independent of b, even though the
density depends on b. For homogeneous external po-
tentials, when the scaled density is employed and the
limit k!1 is considered, all densities corresponding
to di�erent ®nite positive b have the same scaling limit.
In other words,

lim
k!1

k3 onb�kx; ky; kz� � lim
k!1

k3 on�kx; ky; kz� �60�
The two- and ten-electron densities are generated from
the nondegenerate ground-state wavefunctions of the
noninteracting 0Ĥ. For the 3-, 9- and 11-electron
densities, the ground state of 0Ĥ is degenerate, but the

integrand cV QC
c �cn� still begins with 2EQC;�2�

c because of
symmetry, following Linderberg and Shull [35]. The
3-, 9- and 11-electron densities are obtained from
wavefunctions that correspond to con®gurations 1s22s,
1s22s22p5 and 1s22s22p63s respectively.

In Table 1, we compare the exact values of 2EQC;�2�
c

with those of 2EAPP;�2�
c , where EAPP;�2�

c � EAPP
c �onk� as

k!1, and on are the ground-state densities of 0Ĥ with
v�r� � ÿb=r. EAPP

c �onk� refers to one of the three ap-
proximations ± LYP, WL, or PBE.

In Table 2, we compare the exact value of 2EQC;�2�
c

with those of 2EAPP;�2�
c , for the ground-state density of

0Ĥ with vb�r� � br2. The exact form of onb is then
onb�r� � 2 �2b2=p�3=2 exp�ÿ2b2r2�. Even though the
density depends on b, the second-order energy is inde-
pendent of b because of Eq. (60).

The approximations tested give reasonable-to-excel-
lent values, depending upon the functional, the number
of electrons, and the external potential for the test den-
sity. In general, the results obtained by means of all
approximations for the density of the harmonic oscilla-
tor external potential are signi®cantly worse than those
for hydrogenic densities. Also, when the adiabatic con-
nection formula Eq. (6) is employed to generate a new
approximation to EQC

c �n�, with all three functionals there
is room for improvement when these functionals are
used to approximate the 2EQC;�2�

c segment of the inte-
grand, which is the initial slope in this adiabatic con-
nection formula.

The numerical results partially explain the results
obtained by Fuentealba and Savin [40]. They found that
the WL functional gives better results than the LYP
approximation when used as a``tack-on'' functional. The
data in Tables 1 and 2 suggest that the WL functional
produces a quite good approximation to the integrand in
Eq. (6). (For a review of the use of the WL approxi-
mation as a functional added to the completed HF en-
ergy see Ref. [41]) In line with this, the PBE functional is
also expected to produce very good results when used as
an approximation to EQC

c �n� or EHF
c �nGS�.

The numbers presented in Table 1 are the same as
those in Ref. [19] but multiplied by a factor of 2. (There
are slight di�erences between the numbers obtained with
the LYP approximation in Ref. [19] and those presented
in this work. Here, the results from the LYP functional
are calculated with the exact value of a, given in Ref.
[36], a � 0:04918, rather than a � 0:049 which was used
in Ref. [19].) Ivanov and Levy [19] have established
connections between known numbers from the asymp-
totic high-Z expansion for the QC correlation energy
and the second-order energy in GoÈ rling±Levy pertur-
bation theory for certain hydrogen-like densities in the
context of the DFT adiabatic connection method.

7 Concluding comments

We have derived an adiabatic connection formula for
the correlation energy functional, EQC

c �n�, of the HF
density. This functional is intended to be added to the

Table 1. Comparison of 2EQC;�2�
c for Ĥ in Eq. (1) with v�r� � ÿb=r

as b!1 to 2EAPP;�2�
c

Density 2EQC;�2�
c 2EPBE;�2�

c 2ELYP;�2�
c 2EWL;�2�

c

2-electron )0.0934 )0.0958 )0.1134 )0.0960
3-electron )0.1074 )0.1168 )0.1990 )0.1136
9-electron )0.7388 )0.7712 )0.9330 )0.7652
10-electron )0.8556 )0.9154 )1.0590 )0.9008
11-electron )0.9068 )0.9506 )1.1780 )0.9436

Table 2. Comparison of 2EQC;�2�
c for Ĥ in Eq. (1) with v�r� � br2 as

b!1, to 2EAPP;�2�
c

Density 2EQC;�2�
c 2EPBE;�2�

c 2ELYP;�2�
c 2EWL;�2�

c

2�2b2=p�3=2 exp�ÿ2b2r2� )0.0994 )0.1626 )0.0710 )0.1564
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completed HF energy to produce the exact ground-state
energy. The initial slope of the integrand in this
integration formula, Eq. (6), has been identi®ed as

2EQC;�2�
c , where EQC;�2�

c is given in Eq. (23). EQC;�2�
c can

be easily computed through the variation-perturbation
method of Hylleraas [34]. Since there are published
numbers for EQC;�2�

c from the asymptotic high-b expan-
sions for the QC correlation energy, we have presented
six numerical tests to assess approximations to the initial
slope of the integrand in the adiabatic connection
formula introduced. Viable DFT correlation energy
functionals have been tested when used as approxima-
tions to 2EQC;�2�

c . Further, Eq. (6) should prove valuable
for developing new improved approximations to EQC

c �n�.
Our adiabatic integration formula enables one to
connect available results at coupling constant 1 and
results at low coupling constants in order to model the
integrand in Eq. (6).

In order to prove recent numerical results by Huang
and Umrigar for homogeneous external potentials vb�r�,
we have developed high-b expansions for Ec nGS;b

� �
and

EQC
c nb
� �

, where nGS;b is the ground-state density and nb

is the HF density of the same Hamiltonian. We have
shown that limb!1 Ec�nGS;b� � limb!1 EQC

c �nb�, with
equality for, and only for, two-electron densities. This
equality has been numerically observed by Huang and
Umrigar.
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